Big Data o Datos masivos es un término que hace referencia a una cantidad de datos tal que supera la capacidad del software convencional para ser capturados, administrados y procesados en un tiempo razonable. El volumen de los datos masivos crece constantemente. Además del gran volumen de información, esta existe en una gran variedad de datos que pueden ser representados de diversas maneras en todo el mundo, por ejemplo de dispositivos móviles, audio, video, sistemas GPS, incontables sensores digitales en equipos industriales, automóviles, medidores eléctricos, veletas, anemómetros, etc., los cuales pueden medir y comunicar el posicionamiento, movimiento, vibración, temperatura,
humedad y hasta los cambios químicos que sufre el aire, de tal forma que las aplicaciones que analizan estos datos requieren que la velocidad de respuesta sea lo demasiado rápida para lograr obtener la información correcta en el momento preciso. Estas son las características principales de una oportunidad para Big Data.
Es importante entender que las bases de datos convencionales son una parte importante y relevante para una solución analítica. De hecho, se vuelve mucho más vital cuando se usa en conjunto con la plataforma de Big Data. Pensemos en nuestras manos izquierda y derecha, cada una ofrece fortalezas individuales para cada tarea en específico. Por ejemplo, un beisbolista sabe que una de sus manos es mejor para lanzar la pelota y la otra para atraparla; puede ser que cada mano intente hacer la actividad de la otra, mas sin embargo, el resultado no será el más óptimo.
¿Qué tipos de datos debo explorar?
Muchas organizaciones se enfrentan a la pregunta sobre ¿qué información es la que se debe analizar?, sin embargo, el cuestionamiento debería estar enfocado hacia ¿qué problema es el que se está tratando de resolver?. Si bien sabemos que existe una amplia variedad de tipos de datos a analizar, una buena clasificación nos ayudaría a entender mejor su representación, aunque es muy probable que estas categorías puedan extenderse con el avance tecnológico.
- Web and Social Media: Incluye contenido web e información que es obtenida de las redes sociales como Facebook, Twitter, LinkedIn, blogs, etc.
- Machine-to-Machine (M2M): se refiere a las tecnologías que permiten conectarse a otros dispositivos. M2M utiliza dispositivos como sensores o medidores que capturan algún evento en particular (velocidad, temperatura, presión, variables meteorológicas, variables químicas como: la salinidad, etc.) los cuales transmiten a través de redes alámbricas, inalámbricas o híbridas a otras aplicaciones que traducen estos eventos en información significativa.
- Big Transaction Data: Incluye registros de facturación, en telecomunicaciones registros detallados de las llamadas (CDR), etc. Estos datos transaccionales están disponibles en formatos tanto semi estructurados como no estructurados.
- Biometrics: Información biométrica en la que se incluye huellas digitales, escaneo de la retina, reconocimiento facial, genética, etc. En el área de seguridad e inteligencia, los datos biométricos han sido información importante para las agencias de investigación.
- Human Generated: Las personas generamos diversas cantidades de datos como la información que guarda un ''call center'' al establecer una llamada telefónica, notas de voz, correos electrónicos, documentos electrónicos, estudios médicos, etc.
No hay comentarios:
Publicar un comentario